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Abstract

This paper introduces two efficient algorithms that compute the
Contour Tree of a 3D scalar fieldF and its augmented version
with the Betti numbers of each isosurface. The Contour Tree is
a fundamental data structure in scientific visualization that is used
to preprocess the domain mesh to allow optimal computation of iso-
surfaces with minimal overhead storage. The Contour Tree can also
be used to build user interfaces reporting the complete topological
characterization of a scalar field, as shown in Figure 1. Data ex-
ploration time is reduced since the user understands the evolution
of level set components with changing isovalue. The Augmented
Contour Tree provides even more accurate information segmenting
the range space of the scalar field in portion of invariant topology.
The exploration time for a single isosurface is also improved since
its genus is known in advance.

Our first new algorithm augments any given Contour Tree with
the Betti numbers of all possible corresponding isocontours in lin-
ear time with the size of the tree. Moreover we show how to extend
the scheme introduced in [3] with the Betti number computation
without increasing its complexity. Thus, we improve on the time
complexity from our previous approach [10] fromO(m log m) to
O(n log n + m), wherem is the number of cells andn is the num-
ber of vertices in the domain ofF .

Our second contribution is a new divide-and-conquer algorithm
that computes the Augmented Contour Tree with improved effi-
ciency. The approach computes the output Contour Tree by merg-
ing two intermediate Contour Trees and is independent of the in-
terpolant. In this way we confine any knowledge regarding a spe-
cific interpolant to an independent function that computes the tree
for a single cell. We have implemented this function for the trilin-
ear interpolant and plan to replace it with higher order interpolants
when needed. The time complexity isO(n + t log n), wheret is
the number of critical points ofF . For the first time we can com-
pute the Contour Tree in linear time in many practical cases where
t = O(n1−ε). We report the running times for a parallel implemen-
tation, showing good scalability with the number of processors.

Keywords: Isosurfaces, Level Sets, Genus, Topology, Betti num-
bers.

1 INTRODUCTION

Scalar fields are used to represent data in different application areas
like geographic information systems, medical imaging or scientific
visualization.

One fundamental visualization technique for scalar fields is the
display of level sets, that is, sets of points of equal scalar value. For

∗This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48. UCRL-JC-149277

example, in terrain models isolines are used to highlight regions of
equal elevation. In medical MRI scans an isosurface can be used
to show and reconstruct the separation between bones and soft tis-
sues. In mechanical engineering isosurfaces of CT scans are used
as starting meshes object reconstruction in reverse engineering pro-
cesses. In molecular simulations level sets are used to determine
molecular structures from single atom information. Meteorologi-
cal simulations isosurfaces are used to track the evolution of cloud
formations.

The domain of a scalar field is typically a geometric mesh, and
the field is provided by associating each vertex in the mesh with a
sampled scalar value. If the mesh is a simplicial complex then a
piecewise linear function is naturally defined by interpolating lin-
early, within each simplex, the scalar values at the vertices. If the
mesh is a rectilinear grid then a piecewise trilinear function is natu-
rally defined by interpolating, within each cell, the scalar values at
the vertices.

The Contour Tree is a data structure that represents the relations
between the connected components of the level sets in a scalar field.
Two connected components that merge together (as one continu-
ously changes the isovalue) are represented as two arcs that join
at a node of the tree. The pre-computation of the Contour Tree al-
lows one to collect structural information relative to the isocontours
of the field. This can be used, for example, to speed up the com-
putation of isosurfaces by computing seed sets over the Contour
Tree data structure as in [13]. The display [1] of the Contour Tree
provides the user with direct insight into the topology of the field
and reduces the user interaction time necessary to “understand” the
structure of the data. Figure 1 shows an example of how informa-
tion can be extracted from the Contour Tree display.

The first efficient technique for Contour Tree computation in 2D
was introduced by de Berg and van Kreveld in [5]. The algorithm
proposed hasO(n log n) complexity. A simplified version, with
the same complexity in 2D andO(m2) complexity in higher di-
mensions, was proposed by van Kreveld et al. in [13]. This new
approach is also used as a preprocessing step for an optimal iso-
contouring algorithm. It computes a small seed set from which any
contour can be tracked in optimal running time. The approach has
been improved by Tarasov and Vyalyi [12] achievingO(m log m)
complexity in the 3D case by a three-pass mechanism that allows
one to resolve the different types of criticalities. Recently Carr,
Snoeyink and Axen [3] presented an elegant extension to any di-
mension based on a two-pass scheme that builds a Join Tree and
a Split Tree that are merged into a unique Contour Tree. The ap-
proach achievesO(m + n log n) time complexity.

One fundamental limitation of the basic Contour Tree is the lack
of additional information regarding the topology of the contours. In
high pressure chemical simulations [11], hydrogen bonds between
the atoms cannot be represented in a traditional way but can be char-
acterized by isosurfaces of potential fields. The Contour Tree pro-
vides important information regarding the clustering of atoms into
molecules but fails to discriminate between linear chains and closed
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of the Augmented Contour Tree with
the line w=const.

w = 0.2453

w = 0.2715

w = 0.1513

w = 0.2398

(a) The number of components of
the isosurface of isovalue w
is equal to the number of intersections

wElectron Density Distribution
of a Methane Molecule

(d) The Augmented Contour Tree can reveal hidden information
(isosurface image on the left),such as enclosed components

shown in  the clipped isosurface image on the right.

β1=18).
(c) Isosurface of genus 9 (Augmented Contour Tree marked by 

Augmented Contour Tree marked by 
topology of the isosurface, here it has genus 3  

(b) The Augmented Contour Tree reports the

β1=6.

Figure 1: Augmented Contour Tree (ACT) and four isosurfaces
(level sets) of the electron density distribution of a methane
molecule. Each arc of the ACT is marked by the second Betti
numberβ1 (equal to twice the genus of number of handles of
the surface) of the corresponding isosurface. The four isosurfaces
are computed for isovaluesw = 0.2715 (a), w = 0.2453 (b),
w = 0.2389 (c) andw = 0.1513 (d). Contour (d) is shown in
two views. The first (standard) view shows only the outer compo-
nent of the isosurface. The second clipped view shows the second
component in the interior, whose presence is revealed by the double
intersection of the horizontal linew = 0.1513 with the ACT.
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Figure 2: (a) 2D scalar field (terrain) represented as a triangular
mesh, a simplicial complex, with elevation values associated with
each vertex. The critical points are marked with colored disks:
maxima in red, saddles in green and minima in purple. A set of
representative level sets (isolines) are drawn in blue. (b) Corre-
sponding Contour Tree.

rings (or more complex structures), which have different physical
behaviors. In [10] we introduced the first efficient algorithm for the
computation of the first three Betti numbers (number of connected
components, tunnels, and voids in a surface) for all the level sets of
a scalar field inO(m log m) time.

In this paper we introduce an extension of the algorithm in [3]
that allows one to add the Betti numbers of each contour while
maintaining the simplicity of the scheme and the efficientO(m +
n log n) time complexity. We also introduce a new divide and con-
quer scheme for the computation of the Contour Tree. The basic
idea is to compute Join/Split Trees by recursively combining the
same trees computed for two halves of the mesh. This approach al-
lows one to achieve better modularity by confining any knowledge
of a specific interpolant to an oracle (that is an independent external
function) that computes the tree for a single cell (in the Appendix
we report the oracle for the trilinear interpolant). In our analysis of
the scheme we show a time complexity ofO(n + t log n), wheret
is the number of critical points in the field.

The algorithm is also easy to parallelize. Running times from
our parallel implementation specialized for rectilinear grids shows
good scalability with the number of processors.

The remainder of the paper is organized as follows. Section 2 in-
troduces the formal definition of Contour Tree and Section 3 a basic
sequential algorithm for its computation. Section 4 introduces our
algorithm for constructing the augmented Betti number information
either as a post-processing or concurrently with the construction of
the Contour Tree. Section 5 presents a new divide a conquer algo-
rithm for the construction of the (Augmented) Contour Tree with
improved time complexity. Section 6 reports the performance re-
sults of a parallel implementation. Section 7 completes the paper
with concluding remarks.

2 THE CONTOUR TREE

Consider a scalar fieldF defined as a pair(f,M), wheref is a real
valued function andM is the domain off . In the following two
sections of this paper the domainM is assumed to be a simplicial
complex withn vertices andm cells. In Section 5 the domainM is
assumed for simplicity to be a rectilinear grid (the results presented



generalize directly to unstructured meshes). Within each simplex
of M the functionf is the linear interpolation of its values at the
vertices (trilinear for grid cells). In other words, the fieldF is com-
pletely defined by the non-empty meshM = {v1, . . . , vn} and the
set of scalar values{f1, . . . , fn}, wherefi = f(vi) andn > 0.
SinceM is connected (or processed one connected component at a
time) the range off is a simple closed intervalr = [fmin, fmax],
wherefmin = min {f1, . . . , fn} andfmax = max {f1, . . . , fn}.

For simplicity of presentation,M is also assumed to be home-
omorphic to a3-ball. One fundamental way to study the field
F is to extract its level sets. For a given scalarw the level set
L(w) is defined as the inverse image ofw ontoM throughf :
L(w) = f−1(w). We call each connected component of the level
setL(x) a contour. One aspect that is well understood in Morse
theory [9] is the evolution of the homology classes of the contours
of F while x changes continuously inr. The points at which the
topology of a contour changes are called critical points and the cor-
responding function values are called critical values. The critical
points are usually assumed to be isolated. This assumption can be
enforced by small (symbolic) perturbations of the function values
{f1, . . . , fn} as discussed in Section 3.

Here this perturbation procedure is weakened by simply assum-
ing that the function values{f1, . . . , fn} are sorted from the small-
est to the largest so thati < j ⇒ fi ≤ fj . This can be enforced
with anO(n log n) preprocessing step. In the following of this pa-
per the order of thefi is used to resolve non-isolated criticalities.

An intuitive way to characterize the Contour Tree is given by the
following definition:

TheContour TreeofF is the graph obtained by continuous con-
traction of each contour ofF to a single point. Adjacent contours
are contracted to adjacent points. Distinct contours are contracted
to distinct points.

Note that the Contour Tree is not a complete Morse graph ofF
since the topological changes of a single contour are not recorded.
Figure 2 shows a 2D scalar field with the associated Contour Tree.

3 CONTOUR TREE COMPUTATION

This section summarizes the main result of [3], which is an elegant
and efficient algorithm for the computation of the Contour Tree in
any dimension. We refer to [3] for a formal proof of the correctness
of the scheme.

The algorithm is divided into three stages: (i) sorting of the ver-
tices in the field, (ii) computing the Join Tree (JT ) and Split Tree
(ST ), and (iii) merging theJT with theST to build theCT .
Sorting vertices. The vertices of the mesh are ordered by increas-
ing function value inO(n log n) time using any suitable standard
sorting technique. It is important to note that the remainder of the
algorithm relies on the assumption that there are no two vertices
with the same function value. Typical input fields do not satisfy
this assumption, therefore we impose a symbolic perturbation of
the function values by replacing the testf(vi)

?
< f(vj) with the

test i ?
< j. After sorting, this integer comparison solves consis-

tently the ties whenf(vi) = f(vj). In the following we also use
the symboli for the node ofCT , JT or ST that corresponds tovi.
We denote byXT a generic reference either toJT or toST .
Computing the JT and the ST . The computation of theJT and
of theST is performed in two sweeps through the data in forward
and reverse vertex order. The Boolean functionIsMin(F , vi) re-
turns true ifvi is a local minimum inF . The JT is built incre-
mentally with a tree data-structure supporting the obvious func-
tions NewTree(), AddNode(XT, i) andAddArc(XT, i, j). The
JT tracks the history of theUNION operations in theUNION-FIND
data-structure over the set of vertices in the mesh, sorted by increas-
ing function value. Specifically a leaf is created and a new “up-
ward” arc is started inJT for each vertex that is a local minimum

Bifurcations

Minimum

Maxima
x=4.0

x=2.0

x=0.0

Topol. change

(1,0,1)

(1,2,1)

(1,0,1)

(1,0,1) (1,0,1)(1,0,1)

2<x<4
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x=1.2

0<x<1.2
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Figure 3: (a) Information provided by the standardCT for a simple
scalar field. (b) IN the Augmented Contour Tree there may be more
nodes and each arc is labeled with the triplet(β0, β1, β2) of the
Betti numbers of the corresponding family of contours. This added
information provided by theACT provides a better understanding
of the structure of each contour.

of F . An arc in theJT is extended when a node is added to a set.
Two arcs merge in a new node in theJT when a vertex is the merge
critical point of two sets. When all the mesh vertices are processed
all the sets have merged together and all the arcs in theJT have
converged successively to a unique root. An emptyUNION-FIND
data-structures is created byNewUF andNewSet(UF, i) creates
the new set{i}, with reference nodei. If k belongs to the seti
thenFind(UF, k) returnsi in constant time.Union(UF, i, j) redi-
rects the pointers of all the elements inj to point toi, if i has larger
cardinality thanj (vice versa if|i| < |j|). The functionJoinTree
is detailed in the pseudocode below. Note that the line indentation
determines the scope of loops.

JoinTree(vertices, edges)
1 JT← NewTree()
2 UF← NewUF()
3 for i = 0 to n− 1 do:
4 AddNode(JT, i)
5 if IsMin(F , vi) then NewSet(UF, i)
6 for each edgevivj with j < i do:
7 i′ ← Find(UF, i)
8 j′ ← Find(UF, j)
9 if j′ 6= i′ then AddArc(JT, i′, j′)

10 Union(UF, i′, j′)
12 return JT

Each vertexvi is associated with two listsUpAdj, of incident edges
(vi, vj) with j > i, andDownAdj of incident edges(vi, vj) with
j < i. In this wayIsMin(F , vi) can test in constant time ifi is a
minimum (DownAdj is empty) and the loop on line 6 directly scans
the elements ofDownAdj.

The routineSplitTree has the same structure asJoinTree. The
only differences are as follows: (i) the main loop (line 3) would
scan the vertices in reverse order, (ii) theif statement in line 5 would
testIsMax instead ofIsMin and (iii) the inner loop (line 6) would
consider the edges(vi, vj) with j > i. These routines are shown
in [3] to have worst case time complexity ofO(m + t log t).
Merging the JT with the ST . In the last stage of the algorithm
theJT is merged with theST to build theCT . The upper leaves
of theJT and the lower leaves of theST are successively removed
from both trees and added to theCT . Consequently the data struc-
ture representing theJT and theST has to support the additional
operationsDelNode(XT, i), andLeaf(XT, i). DelNode(XT, i)
removes the nodei from XT while maintaining the consistency of
XT by removing any arcij and replacing any pair of arcsij, ik
with the arcjk. The Boolean functionLeaf(XT, i) tests whether
the nodei is a leaf ofXT . More specificallyLeaf(JT, i) is true
if the JT has no arcij with j < i, andLeaf(ST, i) is true if the



ST has no arcij with j > i. GetAdj(XT, i) returns a vertexj
if XT contains the arcij. A queue data structure is used to store
pairs [NodeName, TreeName] and is managed with the func-
tionsNewQ() (to create a queue),Get(Q) (to get a pair from the
queueQ) andPut(Q, [XT, i]) (to add a pair toQ).

ContourTree(JT, ST )
1 Q ← NewQ()
2 CT ← NewTree()
3 for i = 0 to n− 1 do:
4 AddNode(CT, i)
5 if Leaf(JT, i) then Put(Q, [JT, i])
6 if Leaf(ST, i) then Put(Q, [ST, i])
7 while [XT, i] ← Get(Q) do:
8 j ← GetAdj(XT, i)
9 DelNode(JT, i)

10 DelNode(ST, i)
11 AddArc(CT, ij)
12 if Leaf(XT, j) then Put(Q, [XT, j])
13 return CT

One can minimize the size of theCT by deleting any node that has
exactly degree two withDelNode. This reduction to a minimalCT
can be done directly during the construction of theJT and of the
ST . This makes the algorithm slightly more complicated but has
the advantage of reducing the size of the intermediate storage.

This last stage of the algorithm hasO(n) complexity. Overall the
algorithm for constructing theCT hasO(m+n log n) complexity,
sincet is never greater thann.

4 BETTI NUMBERS COMPUTATION

This section introduces a modification to the functionContourTree
that provides a more detailed characterization of the contours of a
scalar field. The output generated by the modified function is the
Augmented Contour Tree (ACT ), as defined in [10], which has a
triple (β0, β1, β2) of Betti numbers associated to each arc of the
tree. Thek-th Betti numberβk of a simplicial complex is the rank
of its k-dimensional homology group. We restrict our attention to
level sets of 3D scalar fields, which are 2D complexes. In this case
only the first three Betti numbers may be non-zero. Their intuitive
interpretation is as follows:β0 is the number of connected com-
ponents,β1 is the number of independent tunnels, andβ2 is the
number of voids enclosed by the surface.

Figure 3(a) shows the minimalCT for a simple scalar field that
has one minimum at isovaluex = 0. The level setf−1(0) is a
single contour coincident with the boundary of the mesh (on the
bottom left). As the isovalue is continuously increased, the level
set splits into four contours at isovaluex = 2 (on the middle left).
Each contour shrinks to a single point and disappears at the maxi-
mum isovaluex = 4 (on the top left). Figure 3(b) shows the mini-
mal ACT for the same scalar field. The added information allows
the user to observe that the level set at the minimum is topologically
a sphere (β0 = 1, β1 = 0, β2 = 1) which turns into a toroidal con-
tour (β0 = 1, β1 = 2, β2 = 1) at isovaluex = 1.2. The toroidal
contour then splits into four components, each being a topological
sphere.

In general theACT has the same structure of theCT since
it has the same number of non-degree-two nodes (extrema and
merge/split points) and the same connectivity among them. The
main difference is that theCT , in its minimal form, has no nodes
of degree two. In contrast theACT requires degree two nodes at
the isovalues where a contour changes its topology without splitting
or merging. Because of these added nodes, each arc of theACT is
associated with a family of contours that are homologically equiv-
alent and hence qualified by the same set of Betti numbers. More-
over, the contours associated with an arc contain no critical points

v v

(a) (b)

v v

(c) (d)

Figure 4: Comparison between two level sets (isolines in blue) of
a 2D scalar field. (a) Isoline of isovaluef(v) − ε. (b) Isoline of
isovaluef(v) + ε. The difference between combinatorial structure
of the two isolines is confined within the star of simplices incident
to v. (c) Lower star of the vertexv. (d) Upper star of the vertexv.

and the Betti numbers are restricted as follows: (i)β0 is always 1,
(ii) β2 is 0 for surfaces with boundary (open) and is 1 for surfaces
without boundary (closed). Onceβ0 andβ2 are determined we can
compute the value ofβ1 using its relationship with the Euler char-
acteristicχ = β0−β1 +β2. Given a triangulated surface, the Euler
numberχ is defined as the number of vertices minus the number of
edges plus the number of faces. In addition to computing the Euler
number, for each contour we count the number of boundary edges
(be). In this way we can determineβ2 by checking ifbe > 0 and
then use the Euler formula to computeβ1 = β0 + β2 − χ. In a
preliminary stage we compute, for each vertexv, the information
necessary to determine the difference between the Euler number
of the level setL(f(v) + ε) and the Euler number of the level set
L(f(v)− ε) whereε > 0 is an arbitrarily small number (remember
thatf(v) = f(w) impliesv = w). Figure 4 shows two such level
sets for a 2D scalar field. The vertices with function value greater
thanf(v) are marked⊕ and the vertices with function value smaller
thanf(v) are markedª. Any simplex (edges, triangles or tetrahe-
dra) containing both vertices of type⊕ and typeª give the same
contribution to the Euler numbers of the two contours and hence
are not considered. The only simplices that are relevant are those
containingv and only vertices of typeª or those containingv and
only vertices of type⊕. We call the lower star ofv the set of sim-
plices of the first type(v,ª, . . . ,ª) and the upper star the set of
simplices of the second type(v,⊕, . . . ,⊕). For both stars we com-
pute the respective Euler numbersLS andUS (number of vertices
minus number of edges plus number of triangles minus number of
tetrahedra). We also count the difference∆be between the bound-
ary edges ofL(f(v)− ε) andL(f(v) + ε). This is summarized in
the following algorithm:

LUStars(vertices, edges, triangles, tetrahedra)
1 for i = 0 to n− 1 do:
2 LSi ← USi ← 1
3 ∆bei ← 0
4 for each edge(vi, vj) with i < j do :
5 LSj ← LSj − 1
6 USi ← USi − 1
7 for each triangle (vi, vj , vk) with i < j < k do :
8 LSk ← LSk + 1
9 USi ← USi + 1

10 if (vi, vj , vk) is a boundary triangle then:
11 ∆bek ← ∆bek − 1
12 ∆bei ← ∆bei + 1
11 for each tetrahedron (vi, vj , vk, vl) with i < j < k < l do :
12 LSl ← LSl − 1
13 USi ← USi − 1
14 return (LS, US, ∆be)



From aCT that contains all the nodes we build the corresponding
ACT . We callχij the Euler number of the contour associated with
the arcij of theCT . For any fixedi the summation

P
χij , with

j < i, is the sum of the Euler numbers of the contours ofL(f(vi)−
ε) which intersect the star ofvi. Similarly we denote bybeij the
number of boundary edges of the contour associated with the arc
ij.

We consider, at a generic nodei, the relation betweenLSi, USi

and the Euler numbers of the contours associated with the arcs in-
cident toi. In particular, each edge, triangle and tetrahedron in the
lower star ofvi produces one vertex, edge and face, respectively,
in some contour ofL(f(vi) − ε). In the same way each edge, tri-
angle and tetrahedron in the upper star ofvi produces one vertex,
edge and face, respectively, in some contour ofL(f(vi)+ε). Since
these two terms are the only difference between the Euler numbers
of L(f(vi)− ε) and ofL(f(vi) + ε) we can write:X

ij|j<i

χij + LSi =
X

ij|j>i

χij + USi. (1)

Overall we have a set ofn linear equations, one for each node
of theACT , with n − 1 unknownsχij . To solve this system we
definen artificial variablesχi that are initially set to zero. In this
way one can rewrite the linear equations as follows:

χi +
X

ij|j<i

χij + LSi =
X

ij|j>i

χij + USi. (2)

A similar argument holds for the count of the boundary edges
beij of each contour. We define an array of auxiliary variablesbei

that are initially set to zero and satisfy the following equations:

bei +
X

ij|j<i

beij + ∆bei =
X

ij|j>i

beij . (3)

We solve the systems of linear equations defined by (2) and (3)
with the procedureAugmentedContourTree, which incrementally
moves an arcij from theCT to theACT each time the correspond-
ing value ofχij can be determined (the functionDegree(XT, v)
returns the degree of the nodev in XT ):

AugmentedContourTree(CT−with−all−nodes)
1 Q ← NewQ()
2 ACT ← NewTree()
3 for i = 0 to n− 1 do:
4 χi ← 0
5 bei ← 0
6 AddNode(ACT, i)
7 if Degree(CT, i) = 1 then Put(Q, i)
8 while i ← Get(Q) do:
9 j ← GetAdj(CT, i)

10 AddArc(ACT, i, j)
11 if i < j then δ ← +1 elseδ ← −1
12 χij ← δ(χi − USj + LSj)
13 beij ← δ(bei + ∆bei)
14 χj ← χj + δ · χij

15 bej ← bej + δ · beij

16 DelNode(CT, i)
17 if Degree(CT, j) = 1 then Put(Q, j)
18 return ACT

Note that the ‘while loop’ in line 8 ofAugmentedContourTree has
the same structure of the ‘while loop’ in line 7 ofContourTree.
Therefore, one can compute directly the Euler numbersχij and
merge theJT with the ST in the same loop. The Betti numbers
can also be added at the same time. For completeness we report the
function that computes the Betti numbers as a post-processing:

NP HiPIP Rho Engine Foot
64x64x64 128x128x128 256x256x110 125x255x176

1 1.0000 1.0000 1.0000 1.0000
2 1.9754 1.9801 1.9988 1.9993
4 3.7633 3.9168 3.9445 3.8986
8 7.4461 7.6365 7.3503 7.0672
16 13.949 15.457 14.302 12.864
32 26.465 28.460 27.132 20.797

Table 1: Performance results for four sample data-sets. The values
given are the speedups achieved in computing theACT on NP pro-
cessors as compared to the case NP=1. The ideal speedup would be
NP times faster.

BettiNumbers(ACT )
1 for each arc ij of ACT do:
2 β0,ij ← β2,ij ← 1
3 if beij 6= 0 then β2,ij ← 0
4 β1 ← β0 + β2 − χij

ACT Reduction. The following function,Reduce, removes all
of the non-critical points from theACT in order to reduce it to its
minimal form. The test is based on the critical point theorem in [2]
and can detect the critical points in constant time once the arrays
LS andUS have been computed. Note that this removal of non-
critical points can be done during the computation of theACT ,
reducing the necessary intermediate storage:

Reduce(ACT )
1 for i = 0 to n− 1 do:
2 if LSi ← USi ← 0
3 DelNode(ACT, i)

Correctness. The correctness of the routinesLUStars and Bet-
tiNumbers derives directly from the definitions of the parameters
computed.

Proof. To prove the correctness ofAugmentedContourTree we
show that there are two invariants that remain true at each iteration.
The invariants are the systems of equations (2) and (3). Initially
both systems are true by definition, since all theχi and thebei are
set to zero. We focus only on equation (2) since the same argument
holds for (3).

At each iteration of the while loop (line 8) a leafi is selected
from theCT together with its incident arcij. Therefore theith
equation (2) has only one unknown,χij . χij is computed with the
explicit formulaχij = LSi−USi+χi, if j > i, or with the explicit
formulaχij = USi − LSi − χi, if j < i. The nodei and the arc
ij are then removed fromCT invalidating thejth equation of (2)
since the termχij is no longer present. We restore its correctness
by adding the value ofχij to χj , if j > i (or subtracting ifj < i).
Thus, after each iteration theCT is reduced by an arc, while the
systems (2) and (3) remain true.

At the end of the loop the treeCT has no arcs and all the terms
χij andbeij are computed.

Complexity. The complexity of the procedureLUStars is O(m)
while the complexity ofAugmentedContourTree andBettiNum-
bers is O(n). Overall the computation of theACT with the Betti
numbers remainsO(m + n log n). In comparison to the previous
O(m log m) achieved in [10] we have to consider thatm can be
as big asO(n2) and therefore the complexity is improved from
O(n2 log n) to O(n2).

5 DIVIDE AND CONQUER STRATEGY

This section introduces a new way to compute theJT and the
ST using a divide-and-conquer strategy. This divide-and-conquer



strategy relies on the possibility of dissectingM into two, nearly
equal, halves separated by a boundary of sizeO(n2/3). This dissec-
tion can be computed for unstructured finite element meshes [8, 7]
in O(n) time. For simplicity of presentation and implementa-
tion (straightforward computation of the dissection), we restrict our
analysis to the case of scalar fieldsF = (f,M) whereM is a rec-
tilinear mesh of dimensionsnx×ny×nz. This is the type of mesh
that typically has the largest number of vertices (i.e., the type used
in the largest simulations or generated by high resolution MRI/CT
scanning devices). In this case the functionf is defined within each
cell as the trilinear interpolation of the field values at the eight ver-
tices. In this framework we cannot use the algorithmContourTree
since it assumes properties that are specific to a piecewise linear
interpolant. For example, the trilinear interpolant admits critical
points in the interior of a cell, a condition not allowed byCon-
tourTree. Triangulating the cells of the grid is usually not an op-
tion for large data-sets, especially because the same topology can-
not be reproduced in general unless several more vertices are added
to each cell of the mesh.

Our approach overcomes this problem by assuming an oracle
OracleJT(F ,M) that returns theJT of F if M is a single cell.
We have implemented such an oracle for the trilinear interpolant
on a cube (see Appendix). To extend the scheme to data-sets with
other types of interpolants, for example a triquadratic interpolant,
requires only to replace the functionOracleJT. OracleST(F ,M)
is simplyOracleJT(−F ,M).
Recursive algorithm. The recursive algorithm has the same struc-
ture of a merge sort scheme with the added feature that non-critical
vertices are removed as soon as possible. This removal provides
an output sensitive character to the algorithm and improves both its
time complexity and its space complexity:

RecursiveJT(F ,M)
1 if Dimensions(M) = (2, 2, 2) then
2 return OracleJT(F ,M)
3 [M1,M2] ← Split (M)
4 JT1 ← RecursiveJT (F ,M1)
5 JT2 ← RecursiveJT (F ,M2)
6 JT ← MergeJT(JT1, JT2)
7 return Reduce(JT )

The functionSplit (M) divides in constant time the domain of the
mesh into two approximately equal meshesM1 andM2. In par-
ticular, if M has size(nx, ny, nz), with nx ≥ ny ≥ nz, then
M1 has size(n′x, ny, nz) andM2 has size(n′′x, ny, nz), where
n′x = dnx/2e andn′′x = nx + 1− n′x. Note that it is important to
split the mesh along the longest axis. In general for the following
complexity analysis it is important that for a mesh with roughlyk3

cells the size of the boundary is maintained of size roughlyk2.
Tree merging. The routineMergeJT below combines the Join
Trees of the two halves of the mesh using a UnionFind data-
structure in the same way the routineJoinTree computes the global
JT from the edges of the mesh. Two key differences need to be
highlighted. First,MergeJT sorts the input nodes in linear time
sinceJT1 and JT2 have their nodes already sorted. In particu-
lar one linear scan through the input trees sorts the nodes and at
the same time merges the duplicate nodes, which correspond to
vertices on the surfaceM1 ∩ M2. This task is performed by
MergeNodesSorted, which also returns the total number of dis-
tinct nodes. Second,MergeJT copies verbatim intoJT the inde-
pendent portions ofJT1 and ofJT2. This is done in linear time.
The UnionFind data-structure is used starting at the nodes that cor-
respond to local minima of the scalar field restricted toM1 ∩M2

(F|M1∩M2 ). The test for minima is performed byIsMin in con-
stant time.

MergeJT(JT1, JT2)
1 JT= NewTree()
2 UF =NewUF()
3 k ← MergeNodesSorted(JT1, JT2))
4 for each nodei = 0 to k − 1 do:
5 AddNode(JT, i)
6 if IsMin(F|M1∩M2 , i) then NewSet(UF, i)
7 for each edgevivj with j < i do:
8 i′ ← Find(UF, i)
9 j′ ← Find(UF, j)

10 if j′ 6= i′ then AddArc(JT, i′, j′)
11 Union(UF, i′, j′)
12 return JT

Let n be the number of vertices ofM1 andM2, k be the num-
ber of nodes ofJT1, JT2 and t be the number of the minima of
F|M1∩M2 . The complexity ofMergeJT is O(n2/3 + k + t log t).
By construction, the size ofM1 ∩M2 is O(n2/3) and, since
t = O(n2/3), we can rewrite the complexity asO(n2/3 log n+k).
ACT Reduction. As shown in Section 4,Reduce can test if a
point i is non-critical simply by looking atLSi andUSi. In this
contextIsRegular performs the same combinatorial test modified
for the interpolant used byOracleJT. Note that the last call toRe-
duce should be modified to not checkIsInterior, so that all of the
non-critical points are removed. Otherwise non-critical points on
the boundary of the mesh would remain inACT :

Reduce(ACT )
1 for i = 0 to n do:
2 if IsInterior(i) and IsRegular(i)
3 DelNode(ACT, i)

Complexity. To determine the complexity ofRecursiveJT we an-
alyze separately the cost of dealing with the interior critical points
and the cost of dealing with the boundaries that are artificially in-
troduced the subdivision process and removed byMergeJT.

We assume thatn is the number of cells ofM and thatSplit
partitionsM into two equal halves of sizen/2. Therefore, the
number of levels in the recursion tree ofRecursiveJT is log n.

The functionOracleJT, which takes constant time, is invoked
exactlyn times (once per cell), accounting for aΘ(n) time com-
plexity.

As the sub-meshes are merged together boundary points become
interior points. In particular, every point is processed byReduce
in constant time. Moreover, any point that fails the testIsRegular
is also processed in constant time byMergeJT at every level of the
recursion. IfF hast critical points we spendO(n + t log n) time
to find and process them.

To analyze the cost of dealing with the boundaries we apply
the master theorem of recursive functions reported on page 62
of [4]. The theorem allows one to determine the complexity of
a functionT (n) on the basis of the recurrence formulaT (n) =
2T (n/2) + f(n) and the complexity of the functionf(n). In this
caseT (n) is the complexity of our recursive algorithm andf(n) is
the complexity ofMergeJT with reference to the boundary points
only (the other points have already been accounted for). As dis-
cussed earlier the highest cost inMergeJT is due to the Union-
Find, which we have set conservatively toO(n2/3 log n). This
means thatf(n) has complexityO(n1−ε) for someε and hence
T (n) = Θ(n). In conclusion, the complexity ofRecursiveJT is
O(n + t log n). For practical cases wheret is less than linear we
havet = O(n1−ε), which means the overall complexity isO(n).

For the case of large data-sets it is also crucial to minimize the
cost of any auxiliary storage. Beyond linear storage in the sizet of
the output,RecursiveJT keeps a storage proportional to the bound-
ary of the mesh. Overall the auxiliary storage isO(t + n2/3).



Note that the analysis above applies for general unstructured
meshes since it is possible to compute inO(n) time a dissection
ofM with boundary of sizeO(n2/3), as shown in [7, 8].

6 PRACTICAL RESULTS

This section reports some practical results from our implementa-
tion of the two algorithms discussed in Sections 4 and 5. We first
present an example of the Augmented Contour Tree of the scalar
field obtained for a simple molecular data-set (methane) that shows
surprisingly intricate topological structures. Next we compare the
timings for the computation on data-sets of five different sizes.
Methane. We consider the topological analysis of a small scalar
field computed byab initio simulation conditions for the methane
molecule. We have computed theACT and displayed it using the
graph drawing toolgraphviz [6]. The top portion of this graph is
shown in Figure 1, along with several isosurfaces, and their cor-
responding points in theACT . We focus on this portion of the
data-set since it is known that the simulation becomes less reliable
at lower densities.

The Methane data-set, which is on a 32x32x32 rectilinear grid,
is the simplest non-trivial data-set we explored. It is a nice exam-
ple, since the visualization of the tree is possible by conventional
means. This gives us a good way of exploring the possibilities of
using theACT as an interface for data understanding. We see from
the isosurfaces (b), (c) and (d) that there is useful information sum-
marized in theACT that is not obvious from the visualization. The
isosurfaces (b) and (c) can be seen immediately to haveβ1 = 6 and
β1 = 18 respectively; therefore, their genus is respectivelyg = 3
andg = 9, given thatg = β1/2 for closed surfaces. In the isosur-
face (d) the initial visualization shows a single surface, whereas the
ACT shows 2 distinct components. Only after adding a clipping
plane the second component is shown to be enclosed within the
first. Performance. We have implemented in parallel the divide-
and-conquerACT algorithm on a shared memory platform. This is
done by creating two processes at each recursion that compute Join
and Split Trees for each half of the mesh. The recursion becomes
sequential as soon as the desired number of processes is reached.
Table 1 summarizes running times for four data-sets of sizes scal-
ing from thousands to millions of vertices. The speedup relative to
the sequential case is reported in Figure 5, compared to the ideal
linear speedup (top line in the chart).

One can see that the speedup obtained in the parallel implemen-
tation scales nearly linearly. The coarse grained subdivision in our
method is easily implemented in parallel. Each processor becomes
responsible for a connected subregion of the mesh and works com-
pletely independently of the other processes. The only communica-
tion necessary is for a child process to return theJT andST that it
computed to its parent.

7 CONCLUSIONS

We have introduced two schemes for the computation of theACT
for scalar fields defined on simplicial meshes and on rectilinear
grids. The first scheme is an extension of the algorithm proposed
in [3] with the computation of the Betti numbers.

The second contribution is a divide-and-conquer scheme for rec-
tilinear grid domains. The complexity of this second scheme is
improved further toO(m + t log n) wheret is the number of crit-
ical points in the mesh. Moreover, we demonstrate good practical
scalability of a simple parallel implementation of this algorithm.

The comparison between the two schemes is interesting even if it
applies to different classes of inputs. In particular, the divide-and-
conquer approach seems to present several advantages, especially
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Figure 5: Practical speedups obtained in the parallel implementa-
tion for four data-sets of different sizes, compared with the ideal
linear speedup.

for the processing of large data-sets. For instance, the auxiliary stor-
age is kept as low asO(n2/3 + t). In contrast the original scheme
can haveO(n) auxiliary storage since the union find processing
needs to maintain auxiliary information on a set of vertices as large
as the largest isosurface in the mesh.

In principle there seem to be no major problems preventing
the application of the divide-and-conquer scheme to unstructured
meshes, but further investigation is necessary to verify if the same
performance benefits can be guaranteed in general.

The simple task of drawing theCT has become a major problem.
For data-sets that we have successfully processed we already obtain
trees that current graph drawing tools cannot handle. Still we plan
to work on data-sets that are orders of magnitude larger. In such
cases the development of interfaces that display theCT will present
a major challenge.
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APPENDIX

We consider the problem of computing the Merge and Split Trees
for a cell with a trilinear interpolant. Our analysis is limited to
the Split Tree since the Join Tree is computed symmetrically. We
show that in the 2D case there are only two possible Split Trees and
in 3D there are only four possible Split Trees. In both cases the
topology of the Split Tree is completely determined by the number
of maxima present in the cell.

Bilinear Interpolant on a Rectangle

Consider a bilinear functionF : R2 → R, defined analytically by
F (x, y) = axy + bx + cy + d. The gradient∇F is as follows:

∇F =

�
∂F/∂x
∂F/∂y

�
=

�
ay + b
ax + c

�
,

wherea, b, c, d are real numbers. Since∂F/∂x and∂F/∂y are
linear functions, it is not possible to have a local maximum or min-
imum for finite values ofx andy. Imposing∇F = 0 one finds
the unique saddle points for x = −c/a, andy = −b/a. More-
over,F is constant along the vertical linelx : x = −c/a, and the
horizontal linely : y = −b/a. Since∂F/∂x is not a function of
x the restrictionF |y=const of F to any line parallel to thex axis
has constant gradient. The gradient ofF |y=const on all the lines
abovely is anti-parallel to the gradient ofF |y=const on all the lines
below ly (see Figure 6). Similarly,lx separates the vertical lines
whereF |x=const has upward gradient from those with downward
gradient.

(a)

(c) (e)

(b)

(d)

minimum saddle maximum

Figure 7: Possible configurations of split tree for a trilinear inter-
polant restricted to an axis aligned parallelepiped. On the left of
each tree there are one or two examples of corresponding paral-
lelepipeds. (a) One maximum. (b) Two maxima. (c) Three max-
ima. (d) Four maxima. (e) Split tree with four maxima that cannot
be constructed.

Lemma 1. There is exactly one saddle points of F in the plane.

Lemma 2. The functionF is constant on the linelx orthogonal to
thex and on the linely orthogonal to they axis, wherelx intersects
ly at the saddle points of F .

We analyze the restriction ofF to axis aligned rectangles. Since
F is linear along each line parallel to the coordinate axis, we
can mark each edge of a square with respect to the direction of
increasing values ofF . Figure 6(a) shows the three different types
of squares that one can have with respect to the orientation of their
edges. A square of typeA has each pair of opposite edges with
parallel orientation. ThereforeA cannot intersectlx or ly. This
type of square has one maximumAM and one minimumAm for
F |A. A square of typeB has both pairs of opposite edges with
anti-parallel orientation. ThereforeB intersects bothlx and ly.
The saddle points must be insideB because it is at the intersection
betweenlx andly. All four vertices ofB are extrema (two maxima
and two minima) ofF |B . In the third type of squareC, one pair
of opposite edges are parallel while the other pair are anti-parallel.
Thus,C must intersect eitherlx or ly, andF |C has one maximum
and one minimum.

Lemma 3. The bilinear functionF restricted to an axis aligned
rectangle can have only one or two maxima. The maxima can be
located only at non-adjacent vertices.

Figure 6(b) shows how the split trees ofF |A and ofF |C are
both single lines connecting the minimum to the maximum. The
split tree ofF |B has one line that connects the lower minimum to
the saddles. At s the split tree ofF |B bifurcates into two lines
connectings to the two maxima.

Trilinear Interpolant on a Parallelepiped

We extend our analysis to the trilinear case and show how to com-
pute the shape of the split and merge trees for a cube on the basis
of the orientation of its edges and the function value of the eventual
body saddle points. The analytical formulation of the trilinear inter-
polant isF (x, y, z) = axyz+bxy+cxz+dyz+ex+gy+hz+k,
with gradient:

∇F =

24 e + by + cz + ayz
g + bx + dz + axz
h + cx + dy + axy
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Figure 8: Impossible configurations that would be necessary to al-
low the construction of a Split Tree shown in Figure 7(e). (a) 3D
view. (b) projection onto thexy plane.

It is easy to see that restrictingF to any plane orthogonal to a coor-
dinate axis yields the bilinear function discussed above. Therefore,
there is no local minimum or maximum ofF . Solving∇F = 0 we
find two critical points of coordinates:

x=
d(ae−bc)±√∆

a(bc−ae)
, y=

c(ag−bd)±√∆

a(bd−ag)
, z=

b(ah−cd)±√∆

a(cd−ah)
,

where the term
√

∆ is either added in all expressions or subtracted
in all expressions, and∆ = (bc − ae)(bd − ag)(cd − ah). These
critical points are both saddles (of indices 1 and 2).

Lemma 4. There are at most two critical points (both saddles) in
F.

We next consider the restriction ofF to an axis aligned paral-
lelepipedP and mark its edges with the direction of increasingF .
The restriction ofF to any face ofP is the bilinear interpolant dis-
cussed in the previous section, therefore facts 3 and 4 imply that
one can have maxima ofF |P only at its vertices. Moreover, each
face ofP can have only two maxima so that the greatest number
of maxima ofF |P is four. Figure 7 shows the five distinct types of
Split Trees that can be built with up to four maxima. We show in
the following that the last type is not consistent with the topology
of the trilinear interpolant.

Theorem 1. The Split Tree ofF |P cannot have the topology of
Figure 7(e).

Proof. Assume that the tree of Figure 7(e) is a valid split tree for
someF |P with maximaM1, M2, M3 andM4. This means that
there exists an isovaluew such that the region ofP with F greater
thanw is partitioned into two connected componentsR1 (contain-
ing M1 andM2) andR2 (containingM3 andM4), as shown in
Figure 8(a). SinceR1 is connected we can find a linel1 that con-
nectsM1 to M2 within R1. Similarly we find a linel2 that con-
nectsM3 to M4 within R2.

Let’s callS1 the front square containing the maxima ofR1, and
S2 the back square containing the maxima ofR2 (S1 andS2 must
be opposite faces ofP ). We assume, without loss of generality, that
S1 andS2 are orthogonal to thez axis. We consider the parallel
projectionP along thez axis, onto thexy plane. The imagesl′1, l′2
of l1, l2 must intersect inP ′ (projection ofP ) because they connect
the two pairs of vertices. Their intersection pointr′ = l′1 ∩ l′2 is the
image of a rayr that is parallel to the axisz and that intersects
both l1 and l2 within P . By construction we have thatF > w
for q1 = r ∩ l1 and forq2 = r ∩ l1. Moreover, sinceR1 is not
connected withR2, there must be a pointq on r, betweenq1 and
q2, whereF < w. Along r the value ofF first decreases from

F (q1) to F (q), and then increases fromF (q) to F (q2). But in a
trilinear function the value ofF must be monotonic along any line
parallel to an orthogonal axis. Thus we have a contradiction, since
we have shown thatF is not monotonic alongr, which is parallel
to thez axis.

In conclusion we can state the following:

Corollary 1. The topology of the Split Tree ofF |P is completely
determined by the count of its local maxima.

The important practical consequence of this theorem is that we
can precompute four templates of Split Trees, and for each element
in the mesh we select the appropriate template from the orientation
of the edges. Simple numerical computations allow one to deter-
mine the specific values of the saddles where the merge occurs.


